Multidrug resistance revisited: A new mechanism and a possible solution

Chiara Riganti\(^1\), Joanna Kopecka\(^1\), Elisa Panada\(^1\), Sara Barak\(^2\), Menachem Rubinstein\(^2\)

\(^1\)Department of Oncology, University of Torino, 10126 Torino, Italy.
\(^2\)Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.

Chemotherapy triggers endoplasmic reticulum (ER) stress.

Drug-resistant cells are also resistant to ER stress-triggered cell death.

Conclusions and significance:

Chemoresistant cells. However, LIP was rapidly degraded by proteasomal and lysosomal proteases in the MDR tumor (B16 melanoma, inducibly over-expressing LAP or LIP). Meir, O., et al, 2010)

Inducible over-expression of LIP reversed the resistance to ER stress (HT29 subclone ½, 3, and 6). The same results were obtained with: A549-A549/MDR lung carcinoma cells, Constitutively chemoresistant Caco-2 colorectal carcinoma cells, Constitutively chemoresistant Caco-2 colorectal carcinoma cells (late UPR)

The expression of LAP or inhibition of its degradation attenuates ER stress and renders many tumor types sensitive to chemotherapy. C/EBPβ is over-expressed in many tumor types. LIP is regulated post-translationally by proteasomal and lysosomal degradation (HT29 cells).